Some new distance-4 constant weight codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new distance-4 constant weight codes

Improved binary constant weight codes with minimum distance 4 and length at most 28 are constructed. A table with bounds on the chromatic number of small Johnson graphs is given.

متن کامل

New Optimal Constant Weight Codes

In 2006, Smith et al. published a new table of constant weight codes, updating existing tables originally created by Brouwer et al. This paper improves upon these results by filling in 9 missing constant weight codes, all of which are optimal by the second Johnson bound. This completes the tables for A(n, 16, 9) and A(n, 18, 10) up to n = 63 and corrects some A(n, 14, 8).

متن کامل

A new table of constant weight codes

A table of binary constant weight codes of length n <; 28 is presented. Explicit constructions are given for most of the 600 codes in the table; the majority of these codes are new. The known techniques for constructing constant weight codes are surveyed, and also a table is given of (unrestricted) binary codes of length J1 <; 28.

متن کامل

New lower bounds for constant weight codes

with M (which is expected). However, as M increases beyond Ahstrart -Some new lower bounds are given for A(n,4, IV), the maximum number of codewords in a binary code of length n, min imum distance 4, and constant weight IV. In a number of cases the results significantly 1.0 improve on the best bounds previously known. h=O 1 .

متن کامل

Six New Constant Weight Binary Codes

We give six improved bounds on A(n, d, w), the maximum cardinality of a binary code of length n with minimum distance d and constant weight w.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics of Communications

سال: 2011

ISSN: 1930-5346

DOI: 10.3934/amc.2011.5.417